Hi
user
Admin Login:
Username:
Password:
Name:
Implicit Multicore Parallelism using CnC-Python
--client
enthought
--show
scipy_2012
--room 106 1187 --force
Next: 11 OpenMG: A New Multigrid Implementation in Python
show more...
Marks
Author(s):
Shams Imam, Vivek Sarkar
Location
106
Date
jul Wed 18
Days Raw Files
Start
11:30
First Raw Start
11:07
Duration
20:00
Offset
0:22:31
End
11:50
Last Raw End
11:53
Chapters
00:00
Total cuts_time
21 min.
raw-playlist
raw-mp4-playlist
encoded-files-playlist
host
archive
public
tweet
mp4
svg
png
assets
release.pdf
Implicit_Multicore_Parallelism_using_CnCPython.json
logs
Admin:
episode
episode list
cut list
raw files day
marks day
marks day
image_files
State:
---------
borked
edit
encode
push to queue
post
richard
review 1
email
review 2
make public
tweet
to-miror
conf
done
Locked:
clear this to unlock
Locked by:
user/process that locked.
Start:
initially scheduled time from master, adjusted to match reality
Duration:
length in hh:mm:ss
Name:
Video Title (shows in video search results)
Emails:
email(s) of the presenter(s)
Released:
Unknown
Yes
No
has someone authorised pubication
Normalise:
Channelcopy:
m=mono, 01=copy left to right, 10=right to left, 00=ignore.
Thumbnail:
filename.png
Description:
We introduce CnC-Python (CP), an approach to implicit multicore parallelism for Python programmers based on a high-level macro data-flow programming model called Concurrent Collections (CnC). With the advent of the multi-core era, it is clear that improvements in application performance will primarily come from increased parallelism. Extracting parallelism from applications often involves the use of low-level primitives such as locks and threads. CP is implicitly parallel and enables programmers to achieve task, data and pipeline parallelism in a declarative fashion while only being required to describe the program as a coordination graph with serial Python code for individual nodes (steps). Thus, CP makes parallel programming accessible to a broad class of programmers who are not trained in parallel programming. The CP runtime requires that Python objects communicated between steps be picklable, but imposes no restriction on the Python idioms used within the serial code. Most data structures of interest to the SciPy community, including NumPy arrays, are included in the class of picklable data structures in Python. The CnC model is especially effective in exploiting parallelism in scientific applications in which the dependences can be represented as arbitrary directed acyclic graphs (``dag parallelism''). Such applications include, but are not limited to, tiled implementations of iterative linear algebra algorithms such as Cholesky decomposition, Gauss-Jordan elimination, Jacobi method, and Successive Over-Relaxation (SOR). Rather than using explicit threads and locks to exploit parallelism, the CnC-Python programmer decomposes their algorithm into individual computation steps and identifies data and control dependences among the steps to create such computation DAGs. Given the DAG (in the form of declarative constraints), it is the responsibility of the CP runtime to extract parallelism and performance from the application. By liberating the scientific programmer, who is not necessarily trained to write explicitly parallel programs, from the nuances of parallel programming, CP provides a high-productivity path for scientific programmers to achieve multi-core parallelism in Python. LINKS: CnC-Python: http://cnc-python.rice.edu Concurrent Collections: http://habanero.rice.edu/cnc
markdown
Comment:
<?xml version='1.0' encoding='UTF-8'?> <ns0:entry xmlns:ns0="http://www.w3.org/2005/Atom"><ns0:category scheme="http://schemas.google.com/g/2005#kind" term="http://gdata.youtube.com/schemas/2007#video" /><ns0:category label="Education" scheme="http://gdata.youtube.com/schemas/2007/categories.cat" term="Education" /><ns0:category scheme="http://gdata.youtube.com/schemas/2007/keywords.cat" term="enthought" /><ns0:category scheme="http://gdata.youtube.com/schemas/2007/keywords.cat" term="scipy_2012" /><ns0:category scheme="http://gdata.youtube.com/schemas/2007/keywords.cat" term="HPC" /><ns0:category scheme="http://gdata.youtube.com/schemas/2007/keywords.cat" term="ShamsImam" /><ns0:category scheme="http://gdata.youtube.com/schemas/2007/keywords.cat" term="VivekSarkar" /><ns0:id>http://gdata.youtube.com/feeds/api/videos/ZC2pm2b_Sks</ns0:id><ns0:author><ns0:name>NextDayVideo</ns0:name><ns0:uri>https://gdata.youtube.com/feeds/api/users/NextDayVideo</ns0:uri></ns0:author><ns0:content type="text">Shams Imam, Vivek Sarkar</ns0:content><ns0:updated>2012-08-02T22:38:02.000Z</ns0:updated><ns0:published>2012-08-02T22:38:02.000Z</ns0:published><ns1:comments xmlns:ns1="http://schemas.google.com/g/2005"><ns1:feedLink countHint="0" href="https://gdata.youtube.com/feeds/api/videos/ZC2pm2b_Sks/comments?client=ndv" rel="http://gdata.youtube.com/schemas/2007#comments" /></ns1:comments><ns1:group xmlns:ns1="http://search.yahoo.com/mrss/"><ns1:keywords>enthought, scipy_2012, HPC, ShamsImam, VivekSarkar</ns1:keywords><ns1:description type="plain">Shams Imam, Vivek Sarkar</ns1:description><ns1:title type="plain">Implicit Multicore Parallelism using CnC-Python</ns1:title><ns2:duration seconds="0" xmlns:ns2="http://gdata.youtube.com/schemas/2007" /><ns1:content duration="0" expression="full" isDefault="true" medium="video" type="application/x-shockwave-flash" url="https://www.youtube.com/v/ZC2pm2b_Sks?version=3&f=user_uploads&c=ndv&d=Aarb2r5skm2_yNTuKEinXdAO88HsQjpE1a8d1GxQnGDm&app=youtube_gdata" ns2:format="5" xmlns:ns2="http://gdata.youtube.com/schemas/2007" /><ns1:thumbnail height="360" time="00:00:00" url="http://i.ytimg.com/vi/ZC2pm2b_Sks/0.jpg" width="480" /><ns1:thumbnail height="90" time="00:00:00" url="http://i.ytimg.com/vi/ZC2pm2b_Sks/1.jpg" width="120" /><ns1:thumbnail height="90" time="00:00:00" url="http://i.ytimg.com/vi/ZC2pm2b_Sks/2.jpg" width="120" /><ns1:thumbnail height="90" time="00:00:00" url="http://i.ytimg.com/vi/ZC2pm2b_Sks/3.jpg" width="120" /><ns1:category label="Education" scheme="http://gdata.youtube.com/schemas/2007/categories.cat">Education</ns1:category><ns1:category scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">enthought</ns1:category><ns1:category scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">scipy_2012</ns1:category><ns1:category scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">HPC</ns1:category><ns1:category scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">ShamsImam</ns1:category><ns1:category scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">VivekSarkar</ns1:category><ns1:player url="https://www.youtube.com/watch?v=ZC2pm2b_Sks&feature=youtube_gdata_player" /></ns1:group><ns0:title type="text">Implicit Multicore Parallelism using CnC-Python</ns0:title><ns1:control xmlns:ns1="http://purl.org/atom/app#"><ns1:draft>yes</ns1:draft><ns2:state name="processing" xmlns:ns2="http://gdata.youtube.com/schemas/2007" /></ns1:control><ns0:link href="https://www.youtube.com/watch?v=ZC2pm2b_Sks&feature=youtube_gdata" rel="alternate" type="text/html" /><ns0:link href="https://gdata.youtube.com/feeds/api/videos/ZC2pm2b_Sks/responses?client=ndv" rel="http://gdata.youtube.com/schemas/2007#video.responses" type="application/atom+xml" /><ns0:link href="https://gdata.youtube.com/feeds/api/videos/ZC2pm2b_Sks/ratings?client=ndv" rel="http://gdata.youtube.com/schemas/2007#video.ratings" type="application/atom+xml" /><ns0:link href="https://gdata.youtube.com/feeds/api/videos/ZC2pm2b_Sks/complaints?client=ndv" rel="http://gdata.youtube.com/schemas/2007#video.complaints" type="application/atom+xml" /><ns0:link href="https://gdata.youtube.com/feeds/api/videos/ZC2pm2b_Sks/related?client=ndv" rel="http://gdata.youtube.com/schemas/2007#video.related" type="application/atom+xml" /><ns0:link href="https://gdata.youtube.com/feeds/api/users/nextdayvideo/uploads/ZC2pm2b_Sks?client=ndv" rel="self" type="application/atom+xml" /><ns0:link href="https://gdata.youtube.com/feeds/api/users/nextdayvideo/uploads/ZC2pm2b_Sks?client=ndv" rel="edit" type="application/atom+xml" /></ns0:entry>
production notes
2012-07-18/09_07_29.dv
Apply:
11:07:29 - 11:31:18 ( 00:23:49 )
S:
11:07:29 -
E:
11:31:18
D:
00:23:49
show more...
vlc ~/Videos/veyepar/enthought/scipy_2012/dv/106/2012-07-18/09_07_29.dv :start-time=00.0 --audio-desync=0
Raw File
Cut List
11:07:29
seconds: 0.0
Wall: 11:07:29
Duration
00:23:49
11:31:18
seconds: 0.0
Wall: 11:07:29
Comments:
mp4
mp4.m3u
dv.m3u
Split:
Sequence:
:
delete
2012-07-18/09_31_18.dv
Apply:
11:31:18 - 11:31:24 ( 00:00:06 )
S:
11:31:18 -
E:
11:31:24
D:
00:00:06
show more...
vlc ~/Videos/veyepar/enthought/scipy_2012/dv/106/2012-07-18/09_31_18.dv :start-time=00.0 --audio-desync=0
Raw File
Cut List
11:31:18
seconds: 0.0
Wall: 11:31:18
Duration
00:00:06
11:31:24
seconds: 0.0
Wall: 11:31:18
Comments:
mp4
mp4.m3u
dv.m3u
Split:
Sequence:
:
delete
2012-07-18/09_31_25.dv
Apply:
11:31:25 - 11:53:02 ( 00:21:37 )
S:
11:31:25 -
E:
11:53:02
D:
00:21:37
show more...
vlc ~/Videos/veyepar/enthought/scipy_2012/dv/106/2012-07-18/09_31_25.dv :start-time=00.0 --audio-desync=0
Raw File
Cut List
11:31:25
seconds: 0.0
Wall: 11:31:25
Duration
00:21:37
11:53:02
seconds: 0.0
Wall: 11:31:25
Comments:
mp4
mp4.m3u
dv.m3u
Split:
Sequence:
:
delete
Rf filename:
root is .../show/dv/location/, example: 2013-03-13/13:13:30.dv
Sequence:
get this:
check and save to add this
2012-07-18/09_07_29.dv
2012-07-18/09_31_18.dv
2012-07-18/09_31_25.dv
Veyepar
Video Eyeball Processor and Review