Hi
user
Admin Login:
Username:
Password:
Name:
Fcm - A python library for flow cytometry
--client
enthought
--show
scipy_2012
--room 106 1218 --force
Next: 11 nmrglue: a Python Module for Working with NMR Data.
show more...
Marks
Author(s):
Jacob Frelinger
Location
106
Date
jul Thu 19
Days Raw Files
Start
15:20
First Raw Start
15:10
Duration
20:00
Offset
0:09:17
End
15:40
Last Raw End
15:42
Chapters
00:00
Total cuts_time
20 min.
raw-playlist
raw-mp4-playlist
encoded-files-playlist
host
archive
public
tweet
mp4
svg
png
assets
release.pdf
Fcm_A_python_library_for_flow_cytometry.json
logs
Admin:
episode
episode list
cut list
raw files day
marks day
marks day
image_files
State:
---------
borked
edit
encode
push to queue
post
richard
review 1
email
review 2
make public
tweet
to-miror
conf
done
Locked:
clear this to unlock
Locked by:
user/process that locked.
Start:
initially scheduled time from master, adjusted to match reality
Duration:
length in hh:mm:ss
Name:
Video Title (shows in video search results)
Emails:
email(s) of the presenter(s)
Released:
Unknown
Yes
No
has someone authorised pubication
Normalise:
Channelcopy:
m=mono, 01=copy left to right, 10=right to left, 00=ignore.
Thumbnail:
filename.png
Description:
Cellular populations in biology are often heterogeneous, and aggregate assays such as expression arrays can obscure the small differences between these populations. Examples where these differences can be highly significant include the identification of antigen-specific immune cells, stem cells and circulating cancer cells. As the frequency of such cells in the blood can be vanishingly small, assays to detect signals at the single cell level are essential. Flow cytometry is probably the best established single cell assay, and has been an integral tool in immunology and biology for decades, able to measure cellular marker levels for individual cells, as well as population statistics over millions of cells. Recent technological innovations in flow cytometry have increased the number of cell markers capable of being resolved simultaneously, and visual analysis (gating) is difficult and error prone with increasing data dimensionality. Hence there is increasing demand for tools to automate the analysis and management of flow data, so as to increase accuracy and reproducibility. However, essentially all software used by flow cytometry laboratories is commercial and based on the visual analysis paradigm. With the exception of the R BioConductor project, we are not aware of any other full-featured open source tools for analyzing flow data. The few open source flow software modules that exist simply extracts data from FCS (flow cytometry standard) files into tabular/csv format, losing all metadata associated with the file, and provide no additional tools for analysis. We therefore decided to develop the *fcm* library in python that would provide a foundation for flow cytometry data management and analysis. The *fcm* library provides functions to load fcs files, apply spectral compensation, and perform standard log and log-like transforms for visualization. The library also provides objects and methods for traditional gating-based analysis, including standard polygon, threshold, interval, and quadrant gates. Using *fcm* and other common python libraries, one can quickly write scripts for doing large scale batch analysis. In addition to gating-based analysis, *fcm* provides methods to do model-based analysis, utilizing GPU-optimized statistical models to identify cell subsets. These statistical models provide a data-driven way to construct generative probability models that scale well with the increasing dimensionality of flow data and do not require expert input to identify cell subsets. High performance computational routines to fit statistical models are optimized using cython and pycuda. More specialized tools for the analysis of flow data include the use of a novel information measure to optimize reagent panels and analysis strategies, and optimization methods for automatic determination of positivity thresholds. We are currently using the *fcm* library for the analysis of tetramer assays for cancer immunotherapy, as well as intracellular expression of effector molecules in the NIAID-sponsored External Quality Assurance Policy Oversight Laboratory (EQAPOL) program to standardize flow cytometry assays in HIV studies. An illustrative example is the use of *fcm* in building a pipeline for the Cytostream application to automate the analysis of 459 FCS files from 12 laboratories, reducing the analysis time of one month to a single evening.
markdown
Comment:
request: <?xml version='1.0' encoding='UTF-8'?> <ns0:entry xmlns:ns0="http://www.w3.org/2005/Atom" xmlns:ns1="http://search.yahoo.com/mrss/"><ns1:group><ns1:keywords>enthought,scipy_2012,JacobFrelinger</ns1:keywords><ns1:description type="plain">Jacob Frelinger Cellular populations in biology are often heterogeneous, and aggregate assays such as expression arrays can obscure the small differences between these populations. Examples where these differences can be highly significant include th</ns1:description><ns1:title>Fcm - A python library for flow cytometry</ns1:title><ns1:category label="Education" scheme="http://gdata.youtube.com/schemas/2007/categories.cat">Education</ns1:category><ns1:category label="e" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">e</ns1:category><ns1:category label="n" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">n</ns1:category><ns1:category label="t" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">t</ns1:category><ns1:category label="h" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">h</ns1:category><ns1:category label="o" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">o</ns1:category><ns1:category label="u" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">u</ns1:category><ns1:category label="g" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">g</ns1:category><ns1:category label="h" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">h</ns1:category><ns1:category label="t" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">t</ns1:category><ns1:category label="," scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">,</ns1:category><ns1:category label="s" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">s</ns1:category><ns1:category label="c" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">c</ns1:category><ns1:category label="i" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">i</ns1:category><ns1:category label="p" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">p</ns1:category><ns1:category label="y" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">y</ns1:category><ns1:category label="_" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">_</ns1:category><ns1:category label="2" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">2</ns1:category><ns1:category label="0" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">0</ns1:category><ns1:category label="1" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">1</ns1:category><ns1:category label="2" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">2</ns1:category><ns1:category label="," scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">,</ns1:category><ns1:category label="J" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">J</ns1:category><ns1:category label="a" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">a</ns1:category><ns1:category label="c" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">c</ns1:category><ns1:category label="o" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">o</ns1:category><ns1:category label="b" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">b</ns1:category><ns1:category label="F" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">F</ns1:category><ns1:category label="r" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">r</ns1:category><ns1:category label="e" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">e</ns1:category><ns1:category label="l" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">l</ns1:category><ns1:category label="i" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">i</ns1:category><ns1:category label="n" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">n</ns1:category><ns1:category label="g" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">g</ns1:category><ns1:category label="e" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">e</ns1:category><ns1:category label="r" scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">r</ns1:category></ns1:group></ns0:entry> error: {'status': 400, 'body': "<?xml version='1.0' encoding='UTF-8'?><errors><error><domain>yt:validation</domain><code>too_short</code><location type='xpath'>media:group/media:category[@scheme='http://gdata.youtube.com/schemas/2007/developertags.cat']/text()</location></error></errors>", 'reason': 'Bad Request'} <?xml version='1.0' encoding='UTF-8'?> <ns0:entry xmlns:ns0="http://www.w3.org/2005/Atom" xmlns:ns1="http://schemas.google.com/g/2005" xmlns:ns2="http://search.yahoo.com/mrss/" xmlns:ns3="http://gdata.youtube.com/schemas/2007" xmlns:ns4="http://purl.org/atom/app#"><ns0:category scheme="http://schemas.google.com/g/2005#kind" term="http://gdata.youtube.com/schemas/2007#video" /><ns0:category label="Education" scheme="http://gdata.youtube.com/schemas/2007/categories.cat" term="Education" /><ns0:category scheme="http://gdata.youtube.com/schemas/2007/keywords.cat" term="enthought" /><ns0:category scheme="http://gdata.youtube.com/schemas/2007/keywords.cat" term="scipy_2012" /><ns0:category scheme="http://gdata.youtube.com/schemas/2007/keywords.cat" term="JacobFrelinger" /><ns0:id>http://gdata.youtube.com/feeds/api/videos/SXdIiLPQLAo</ns0:id><ns0:author><ns0:name>NextDayVideo</ns0:name><ns0:uri>https://gdata.youtube.com/feeds/api/users/NextDayVideo</ns0:uri></ns0:author><ns0:content type="text">Jacob Frelinger Cellular populations in biology are often heterogeneous, and aggregate assays such as expression arrays can obscure the small differences between these populations. Examples where these differences can be highly significant include th</ns0:content><ns0:updated>2012-08-21T04:11:50.000Z</ns0:updated><ns0:published>2012-08-21T04:11:50.000Z</ns0:published><ns1:comments><ns1:feedLink countHint="0" href="https://gdata.youtube.com/feeds/api/videos/SXdIiLPQLAo/comments?client=ndv" rel="http://gdata.youtube.com/schemas/2007#comments" /></ns1:comments><ns2:group><ns2:keywords>enthought, scipy_2012, JacobFrelinger</ns2:keywords><ns2:description type="plain">Jacob Frelinger Cellular populations in biology are often heterogeneous, and aggregate assays such as expression arrays can obscure the small differences between these populations. Examples where these differences can be highly significant include th</ns2:description><ns2:title type="plain">Fcm - A python library for flow cytometry</ns2:title><ns3:duration seconds="0" /><ns2:content duration="0" expression="full" isDefault="true" medium="video" type="application/x-shockwave-flash" url="https://www.youtube.com/v/SXdIiLPQLAo?version=3&f=user_uploads&c=ndv&d=Aarb2r5skm2_yNTuKEinXdAO88HsQjpE1a8d1GxQnGDm&app=youtube_gdata" ns3:format="5" /><ns2:thumbnail height="360" time="00:00:00" url="http://i.ytimg.com/vi/SXdIiLPQLAo/0.jpg" width="480" /><ns2:thumbnail height="90" time="00:00:00" url="http://i.ytimg.com/vi/SXdIiLPQLAo/1.jpg" width="120" /><ns2:thumbnail height="90" time="00:00:00" url="http://i.ytimg.com/vi/SXdIiLPQLAo/2.jpg" width="120" /><ns2:thumbnail height="90" time="00:00:00" url="http://i.ytimg.com/vi/SXdIiLPQLAo/3.jpg" width="120" /><ns2:category label="Education" scheme="http://gdata.youtube.com/schemas/2007/categories.cat">Education</ns2:category><ns2:category scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">enthought</ns2:category><ns2:category scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">scipy_2012</ns2:category><ns2:category scheme="http://gdata.youtube.com/schemas/2007/developertags.cat">JacobFrelinger</ns2:category><ns2:player url="https://www.youtube.com/watch?v=SXdIiLPQLAo&feature=youtube_gdata_player" /></ns2:group><ns0:title type="text">Fcm - A python library for flow cytometry</ns0:title><ns4:control><ns4:draft>yes</ns4:draft><ns3:state name="processing" /></ns4:control><ns0:link href="https://www.youtube.com/watch?v=SXdIiLPQLAo&feature=youtube_gdata" rel="alternate" type="text/html" /><ns0:link href="https://gdata.youtube.com/feeds/api/videos/SXdIiLPQLAo/responses?client=ndv" rel="http://gdata.youtube.com/schemas/2007#video.responses" type="application/atom+xml" /><ns0:link href="https://gdata.youtube.com/feeds/api/videos/SXdIiLPQLAo/ratings?client=ndv" rel="http://gdata.youtube.com/schemas/2007#video.ratings" type="application/atom+xml" /><ns0:link href="https://gdata.youtube.com/feeds/api/videos/SXdIiLPQLAo/complaints?client=ndv" rel="http://gdata.youtube.com/schemas/2007#video.complaints" type="application/atom+xml" /><ns0:link href="https://gdata.youtube.com/feeds/api/videos/SXdIiLPQLAo/related?client=ndv" rel="http://gdata.youtube.com/schemas/2007#video.related" type="application/atom+xml" /><ns0:link href="https://gdata.youtube.com/feeds/api/users/nextdayvideo/uploads/SXdIiLPQLAo?client=ndv" rel="self" type="application/atom+xml" /><ns0:link href="https://gdata.youtube.com/feeds/api/users/nextdayvideo/uploads/SXdIiLPQLAo?client=ndv" rel="edit" type="application/atom+xml" /></ns0:entry>
production notes
2012-07-19/13_10_43.dv
Apply:
15:10:43 - 15:22:21 ( 00:11:38 )
S:
15:10:43 -
E:
15:22:21
D:
00:11:38
show more...
vlc ~/Videos/veyepar/enthought/scipy_2012/dv/106/2012-07-19/13_10_43.dv :start-time=00.0 --audio-desync=0
Raw File
Cut List
15:10:43
seconds: 0.0
Wall: 15:10:43
Duration
00:11:38
15:22:21
seconds: 0.0
Wall: 15:10:43
Comments:
mp4
mp4.m3u
dv.m3u
Split:
Sequence:
:
delete
2012-07-19/13_22_22.dv
Apply:
15:22:22 - 15:42:55 ( 00:20:33 )
S:
15:22:22 -
E:
15:42:55
D:
00:20:33
show more...
vlc ~/Videos/veyepar/enthought/scipy_2012/dv/106/2012-07-19/13_22_22.dv :start-time=00.0 --audio-desync=0
Raw File
Cut List
15:22:22
seconds: 0.0
Wall: 15:22:22
Duration
00:20:33
15:42:55
seconds: 0.0
Wall: 15:22:22
Comments:
mp4
mp4.m3u
dv.m3u
Split:
Sequence:
:
delete
Rf filename:
root is .../show/dv/location/, example: 2013-03-13/13:13:30.dv
Sequence:
get this:
check and save to add this
2012-07-19/13_10_43.dv
2012-07-19/13_22_22.dv
Veyepar
Video Eyeball Processor and Review